3.292 \(\int \frac {x^4}{\sqrt {1-a^2 x^2} \cosh ^{-1}(a x)} \, dx\)

Optimal. Leaf size=98 \[ \frac {\sqrt {a x-1} \text {Chi}\left (2 \cosh ^{-1}(a x)\right )}{2 a^5 \sqrt {1-a x}}+\frac {\sqrt {a x-1} \text {Chi}\left (4 \cosh ^{-1}(a x)\right )}{8 a^5 \sqrt {1-a x}}+\frac {3 \sqrt {a x-1} \log \left (\cosh ^{-1}(a x)\right )}{8 a^5 \sqrt {1-a x}} \]

[Out]

1/2*Chi(2*arccosh(a*x))*(a*x-1)^(1/2)/a^5/(-a*x+1)^(1/2)+1/8*Chi(4*arccosh(a*x))*(a*x-1)^(1/2)/a^5/(-a*x+1)^(1
/2)+3/8*ln(arccosh(a*x))*(a*x-1)^(1/2)/a^5/(-a*x+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.47, antiderivative size = 137, normalized size of antiderivative = 1.40, number of steps used = 6, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {5798, 5781, 3312, 3301} \[ \frac {\sqrt {a x-1} \sqrt {a x+1} \text {Chi}\left (2 \cosh ^{-1}(a x)\right )}{2 a^5 \sqrt {1-a^2 x^2}}+\frac {\sqrt {a x-1} \sqrt {a x+1} \text {Chi}\left (4 \cosh ^{-1}(a x)\right )}{8 a^5 \sqrt {1-a^2 x^2}}+\frac {3 \sqrt {a x-1} \sqrt {a x+1} \log \left (\cosh ^{-1}(a x)\right )}{8 a^5 \sqrt {1-a^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[x^4/(Sqrt[1 - a^2*x^2]*ArcCosh[a*x]),x]

[Out]

(Sqrt[-1 + a*x]*Sqrt[1 + a*x]*CoshIntegral[2*ArcCosh[a*x]])/(2*a^5*Sqrt[1 - a^2*x^2]) + (Sqrt[-1 + a*x]*Sqrt[1
 + a*x]*CoshIntegral[4*ArcCosh[a*x]])/(8*a^5*Sqrt[1 - a^2*x^2]) + (3*Sqrt[-1 + a*x]*Sqrt[1 + a*x]*Log[ArcCosh[
a*x]])/(8*a^5*Sqrt[1 - a^2*x^2])

Rule 3301

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[(c*f*fz)/d
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rule 3312

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin
[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1])
)

Rule 5781

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_
.), x_Symbol] :> Dist[(-(d1*d2))^p/c^(m + 1), Subst[Int[(a + b*x)^n*Cosh[x]^m*Sinh[x]^(2*p + 1), x], x, ArcCos
h[c*x]], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IntegerQ[p
+ 1/2] && GtQ[p, -1] && IGtQ[m, 0] && (GtQ[d1, 0] && LtQ[d2, 0])

Rule 5798

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Dist
[((-d)^IntPart[p]*(d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(f*x)^m*(1 + c*
x)^p*(-1 + c*x)^p*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[c^2*d + e, 0]
 &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {x^4}{\sqrt {1-a^2 x^2} \cosh ^{-1}(a x)} \, dx &=\frac {\left (\sqrt {-1+a x} \sqrt {1+a x}\right ) \int \frac {x^4}{\sqrt {-1+a x} \sqrt {1+a x} \cosh ^{-1}(a x)} \, dx}{\sqrt {1-a^2 x^2}}\\ &=\frac {\left (\sqrt {-1+a x} \sqrt {1+a x}\right ) \operatorname {Subst}\left (\int \frac {\cosh ^4(x)}{x} \, dx,x,\cosh ^{-1}(a x)\right )}{a^5 \sqrt {1-a^2 x^2}}\\ &=\frac {\left (\sqrt {-1+a x} \sqrt {1+a x}\right ) \operatorname {Subst}\left (\int \left (\frac {3}{8 x}+\frac {\cosh (2 x)}{2 x}+\frac {\cosh (4 x)}{8 x}\right ) \, dx,x,\cosh ^{-1}(a x)\right )}{a^5 \sqrt {1-a^2 x^2}}\\ &=\frac {3 \sqrt {-1+a x} \sqrt {1+a x} \log \left (\cosh ^{-1}(a x)\right )}{8 a^5 \sqrt {1-a^2 x^2}}+\frac {\left (\sqrt {-1+a x} \sqrt {1+a x}\right ) \operatorname {Subst}\left (\int \frac {\cosh (4 x)}{x} \, dx,x,\cosh ^{-1}(a x)\right )}{8 a^5 \sqrt {1-a^2 x^2}}+\frac {\left (\sqrt {-1+a x} \sqrt {1+a x}\right ) \operatorname {Subst}\left (\int \frac {\cosh (2 x)}{x} \, dx,x,\cosh ^{-1}(a x)\right )}{2 a^5 \sqrt {1-a^2 x^2}}\\ &=\frac {\sqrt {-1+a x} \sqrt {1+a x} \text {Chi}\left (2 \cosh ^{-1}(a x)\right )}{2 a^5 \sqrt {1-a^2 x^2}}+\frac {\sqrt {-1+a x} \sqrt {1+a x} \text {Chi}\left (4 \cosh ^{-1}(a x)\right )}{8 a^5 \sqrt {1-a^2 x^2}}+\frac {3 \sqrt {-1+a x} \sqrt {1+a x} \log \left (\cosh ^{-1}(a x)\right )}{8 a^5 \sqrt {1-a^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 69, normalized size = 0.70 \[ \frac {\sqrt {\frac {a x-1}{a x+1}} (a x+1) \left (4 \text {Chi}\left (2 \cosh ^{-1}(a x)\right )+\text {Chi}\left (4 \cosh ^{-1}(a x)\right )+3 \log \left (\cosh ^{-1}(a x)\right )\right )}{8 a^5 \sqrt {-((a x-1) (a x+1))}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^4/(Sqrt[1 - a^2*x^2]*ArcCosh[a*x]),x]

[Out]

(Sqrt[(-1 + a*x)/(1 + a*x)]*(1 + a*x)*(4*CoshIntegral[2*ArcCosh[a*x]] + CoshIntegral[4*ArcCosh[a*x]] + 3*Log[A
rcCosh[a*x]]))/(8*a^5*Sqrt[-((-1 + a*x)*(1 + a*x))])

________________________________________________________________________________________

fricas [F]  time = 0.45, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {-a^{2} x^{2} + 1} x^{4}}{{\left (a^{2} x^{2} - 1\right )} \operatorname {arcosh}\left (a x\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/arccosh(a*x)/(-a^2*x^2+1)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-a^2*x^2 + 1)*x^4/((a^2*x^2 - 1)*arccosh(a*x)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{4}}{\sqrt {-a^{2} x^{2} + 1} \operatorname {arcosh}\left (a x\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/arccosh(a*x)/(-a^2*x^2+1)^(1/2),x, algorithm="giac")

[Out]

integrate(x^4/(sqrt(-a^2*x^2 + 1)*arccosh(a*x)), x)

________________________________________________________________________________________

maple [B]  time = 0.71, size = 249, normalized size = 2.54 \[ \frac {\sqrt {-a^{2} x^{2}+1}\, \sqrt {a x -1}\, \sqrt {a x +1}\, \Ei \left (1, 4 \,\mathrm {arccosh}\left (a x \right )\right )}{16 a^{5} \left (a^{2} x^{2}-1\right )}+\frac {\sqrt {-a^{2} x^{2}+1}\, \sqrt {a x -1}\, \sqrt {a x +1}\, \Ei \left (1, -4 \,\mathrm {arccosh}\left (a x \right )\right )}{16 a^{5} \left (a^{2} x^{2}-1\right )}-\frac {3 \sqrt {-a^{2} x^{2}+1}\, \sqrt {a x -1}\, \sqrt {a x +1}\, \ln \left (\mathrm {arccosh}\left (a x \right )\right )}{8 a^{5} \left (a^{2} x^{2}-1\right )}+\frac {\sqrt {-a^{2} x^{2}+1}\, \sqrt {a x -1}\, \sqrt {a x +1}\, \Ei \left (1, 2 \,\mathrm {arccosh}\left (a x \right )\right )}{4 a^{5} \left (a^{2} x^{2}-1\right )}+\frac {\sqrt {-a^{2} x^{2}+1}\, \sqrt {a x -1}\, \sqrt {a x +1}\, \Ei \left (1, -2 \,\mathrm {arccosh}\left (a x \right )\right )}{4 a^{5} \left (a^{2} x^{2}-1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/arccosh(a*x)/(-a^2*x^2+1)^(1/2),x)

[Out]

1/16*(-a^2*x^2+1)^(1/2)*(a*x-1)^(1/2)*(a*x+1)^(1/2)/a^5/(a^2*x^2-1)*Ei(1,4*arccosh(a*x))+1/16*(-a^2*x^2+1)^(1/
2)*(a*x-1)^(1/2)*(a*x+1)^(1/2)/a^5/(a^2*x^2-1)*Ei(1,-4*arccosh(a*x))-3/8*(-a^2*x^2+1)^(1/2)*(a*x-1)^(1/2)*(a*x
+1)^(1/2)/a^5/(a^2*x^2-1)*ln(arccosh(a*x))+1/4*(-a^2*x^2+1)^(1/2)*(a*x-1)^(1/2)*(a*x+1)^(1/2)/a^5/(a^2*x^2-1)*
Ei(1,2*arccosh(a*x))+1/4*(-a^2*x^2+1)^(1/2)*(a*x-1)^(1/2)*(a*x+1)^(1/2)/a^5/(a^2*x^2-1)*Ei(1,-2*arccosh(a*x))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{4}}{\sqrt {-a^{2} x^{2} + 1} \operatorname {arcosh}\left (a x\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4/arccosh(a*x)/(-a^2*x^2+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^4/(sqrt(-a^2*x^2 + 1)*arccosh(a*x)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x^4}{\mathrm {acosh}\left (a\,x\right )\,\sqrt {1-a^2\,x^2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4/(acosh(a*x)*(1 - a^2*x^2)^(1/2)),x)

[Out]

int(x^4/(acosh(a*x)*(1 - a^2*x^2)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{4}}{\sqrt {- \left (a x - 1\right ) \left (a x + 1\right )} \operatorname {acosh}{\left (a x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4/acosh(a*x)/(-a**2*x**2+1)**(1/2),x)

[Out]

Integral(x**4/(sqrt(-(a*x - 1)*(a*x + 1))*acosh(a*x)), x)

________________________________________________________________________________________